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extrapolation which possesses a high order of accuracy, a high degree of parallelism, less
computational complexity and more flexibility than Richardson extrapolation. According
to the problems, some domain decompositions are constructed and some independent
mesh parameters are designed. Multi-parameter asymptotic expansions are proved for
the errors of approximations. Based on the expansions, splitting extrapolation formulas

AMS subject classification:

65805 are developed to compute approximations with high order of accuracy on a globally fine

65N12 grid. Because these formulas only require us to solve a set of smaller discrete subproblems

65N30 on different coarser grids in parallel instead of on the globally fine grid, a large scale mul-

35J60 tidimensional problem is turned into a set of smaller discrete subproblems. Additionally,
this method is efficient for solving interface problems.
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1. Introduction

In this paper, we consider a finite element splitting extrapolation for solving the following modeling nonlinear elliptic
equations:

d
Lu= - Z Di(aij(xv U)DJU) :f(xvu) on ‘Qv
ij=1 (1.1)
u=g(x) on o€,
where Q ¢ ®Y(d = 2,3),a5(x,u) € Lo(2),x = (X1, ...,X4), D; = . Without loss of generalization, we only consider the equa-
tions with Dirichlet boundary condition here. The splitting e)étrapolation can be used to handle the equations with other
boundary conditions similarly.
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It is well known that efficiently and accurately solving this problem is critical in many applications of engineering and
sciences, such as heat and mass transfer phenomena and electrostatic field problems. For example, in inhomogeneous
and/or anisotropic media, the thermal conductivity (diffusion coefficient) can depend on the coordinates, the temperature
and the heat transfer direction. Recently, many efforts have been attempted to describe the thermal conductivity more
accurately, see [5,7] and reference there in. However, no matter how the thermal conductivity is described, for the phenom-
ena in steady state, an inhomogeneous and/or anisotropic medium always leads to our modeling nonlinear elliptic partial
differential equation.

The modeling problem can be solved by conventional numerical methods, including both finite difference (FD) methods and
finite element (FE) methods. However, for large scale problem, how to solve this modeling problem more accurately and effi-
ciently still remains challenging. Richardson extrapolation is an efficient acceleration method to improve the accuracy and the
rate of convergence. Therefore, a lot of work was contributed to this method, see[1,2,6,11,14,17,23,25,29] and reference therein.

Nevertheless, unbalanced loads is a shortcoming of Richardson extrapolation method on parallel algorithm. In addition,
Richardson extrapolation has high complexity order and some strict smoothness requirements for the analytic solutions.
Splitting extrapolation is developed by Lin and Lii [15] in 1983 to get rid of these limitations. First, we design some indepen-
dent mesh parameters, say, h, ..., hy, and let u(hy, ..., hy) to denote the corresponding approximation. Once we prove a mul-
ti-parameter asymptotic expansion of the error for the independent parameters, we can follow the way in Section 4 to
construct a special linear combination of u(hy,. .., hy), u(%1 yees i), u(hy, . ,"7"), so that a new approximation with higher
order of accuracy is obtained.

This method is naturally parallel with high degree of parallelism, improves the accuracy with less computational com-
plexity than Richardson extrapolation and only requires piecewise smoothness for the analytic solutions. The design of
the independent parameters also gives us flexibility in choosing different kinds of meshes. In addition, it can save a lot of
memory if we want to use sequential computation. These advantages of splitting extrapolation become more clear and pow-
erful when the size of the problem is large and more independent meshes sizes are designed with domain decomposition.
For more background, we refer the reader to [10,13,15,16,21,22,24,27,28].

Finite element splitting extrapolation based on domain decomposition is an important development of splitting extrap-
olation. First an initial domain decomposition is constructed according to the dimension and interface of the problem, the
shape and size of the domain, and the computers used. Then the independent parameters are designed for all subdomains.
The algorithm combines advantages of domain decomposition and splitting extrapolation and can be applied to interface
problems with discontinuous coefficients. After Lii [18] proposed the idea in 1987, the finite element splitting extrapolation
based on domain decomposition and linear finite elements has been presented in [12,13,19,30]. Lii et al. [9,20] have pre-
sented a finite element splitting extrapolation based on domain decomposition and d-quadratic iso-parametric finite ele-
ments to solve linear elliptic and parabolic equations with curved boundaries. Obviously, the splitting extrapolation of
quadratic finite elements possesses higher order of accuracy than that of linear finite elements.

Since this kind of finite element splitting extrapolation is efficient for linear problems, it is hopeful to apply it to nonlinear
problems. However, the analysis for nonlinear cases is much different from and more difficult than that of the linear cases.
Hence, it is not trivial to extend this method for nonlinear problems. In this paper, we will investigate the finite element
splitting extrapolation based on domain decomposition and d-quadratic iso-parametric finite elements for solving second
order nonlinear elliptic equations with curved boundaries.

This paper is organized as follows: in Section 2, we will introduce some preliminaries and notations; in Section 3, we will
prove the multi-variable asymptotic expansion of d-quadratic iso-parametric finite element errors; in Section 4, we will de-
velop the corresponding splitting extrapolation formulas; in Section 5, we will introduce a parallel/sequential algorithm; in
Section 6, we will present some a posteriori error estimates; in Section 7, we present two numerical examples.

2. Some preliminaries and notations

First, with the same method as in [4,9,20], we construct the partition and d-quadratic iso-parametric mapping as follows.
Even though the following set-up is well known, we still repeat it here in order to introduce the notations that will be used.
We construct a non-overlapping initial domain decomposition Q = (JI",Q;, where Q;(i = 1,...,m) are allowed to have some
curved boundaries, but satisfy the compatibility condition, i.e., Q;( Q;(i#j) is either empty or the set of common vertices,
common edges and common surfaces. 0Q; \ Q2 is called a pseudo-boundary, which is often the interface of a discontinuous
coefficient function. For the initial partition, we assume the following:

(1) There are unit cubes f),-(i =1,...,m) c R and one-to-one d-quadratic iso-parametric mappings ¥; : @; — Q; such that
{¥; '} are sufficiently smooth.

(2) @ =J",Q; is an initial uniform partition satisfying the compatibility condition.

(3) If I'y = 092;(N0Q;, then ¥i(x) = P;(x),Vx € I'.
Let fi? (i=1,...,m)be auniform cuboid partition with grid parameter flij (i=1,...,d)on Q; such that 3" = K %? isa
piecewise uniform cuboid partition on Q. Note that because of compatibility conditions, there are only [ (I < md) inde-
pendent grid parameters which are denoted by h, ..., hy. From the construction of mappings {¥;}, we can derive a
compatible partition 3" = | J, 3" on Q. We also have that
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4) If zis an inner grld point in Q;, thenz = ~1(2) is also an inner grid point in ;.
5)1fze F/l = aQ ﬂaQ is a grid point on FU, then z = ¥;'(2) is also a grid point on T.
6) Ifze0QN Q;isa grld point on dQ, then z = ¥ 1(2) is also a grid point on 8Q.

7) If an element & € 3", then e = ¥ (é) € 3.

(
(
(
(

By the d-quadratic iso-parametric mapping, (1.1) is converted to the following problem:
d . .
— 3" Di(a;(x,0)Dit) = f(x,11) on Q,
i; (az(x, u)Djur) = f(x, ) 22)
it =g(x) on 9Q.

where X = (Xq,...,%q), 5i =2

w andu\A =uo¥il,.

Second, in order to ensure the ex1stence uniqueness and smoothness of the solution to the problem (2.2), we assume that

d

3,u>02al] WG = py &, v

ij=1 i=1

Third, let Hl( ):={it e H'(Q): it =0 on 8Q}, (iL,D) = fﬁ uddx, then the weak form can be obtained as follows: find
il € H(Q) satisfying

A, b) = (f(i1), D), VD € H)(R), (2.4)

Vil € R. (2.3)

><>

A(iL,0) = > (@y(%, i) Dyt, DiD). (2.5)

Fourth, let Sh - H]( )N C(Q) denote the d-quadratic finite element space under the partition 3", then the discrete
scheme can be obtalned as follows: find i, € S" satisfying

A(l:lh, Dh) = (f(l:lh)., Dh), Vﬁ]¢ S SO- (26)

It is well known that the standard Galerkin method with d-quadratic finite elements can be used to get an approximation
and Richardson extrapolation can be applied to the approximation. However, our final goal here is to develop the splitting
extrapolation to get an approximation of high accuracy by computing a set of smaller discrete subproblems in parallel.
Therefore, as we mentioned in Section 1, we need to prove the multi-parameter asymptotic expansion of the errors of the
d-quadratic iso-parametric finite element approximations and construct the splitting extrapolation formulas, which will
be done in the next two sections. Here are some more conventions used in this article.

fl = (Fh, e ,il[), flo = maX1<,<1]jl,‘. ) R

Coarse grid: the grid obtained from h© = (h;,. .

Locally fine grid: the grid obtained from h® = (h ,...,%, Soh),i=1,000 L
(¥

Globally fine grid: the grid obtained from “ A

Qg. the set of grid points obtained from f} (fll, ... ,ﬁ,). .
Q" the set of grid points obtained from h® = (h1 % Lh,i=1,000L

Let @' be the finite element interpolation function of @ in S”‘ Let || - H ~ denote the norm of the space W"( )| - || ~ de-
k.p,Q

note the norm of the space H*(Q) and || - H ~ denote the norm of the space W* (Q Q). We define I, (Q ) tobe a product

space with the norm || - | =0 H N HHH" s) to be a product space with the norm | - ”/ 5= AR Hkﬁ %,

and [17, Wﬁo( s) to be a product space w1th the norm || - |||~ = sup;enll - |

koo, @ koo Qg

3. Multi-parameter asymptotic expansion of the d-quadratic iso-parametric finite element error

We presented the discrete d-quadratic iso-parametric finite element approximation for nonlinear elliptic equations in
Section 2. In this section we will prove the multi-parameter asymptotic expansion of its error. Unless otherwise specified,
we use C to represent a generic constant C whose values might be different from line to line. First, we recall the following
two lemmas from [20].

Lemma 3.1. Consider a linear elliptic weak form

> (@(X)Diw, Did) + (pw, D) = (f,0), VD € Hy(Q)
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and the corresponding d-quadratic iso-parametric finite element discrete scheme
> (é4i(%) Diy, Diby) + (PWh, 0n) = (f, D). ¥y € Sh.

Assume that &;,p € (TT0, W2 (Q)) NLx(Q) and W e ([T7"H' (Qs)) NHy(Q), then there exist functions ¢; € ([T"H"(Qs)) NL*
(Q)(i=1,...,1) independent of h such that

1
> B+
i=1

el &= o(hg+“| In h0|"%), o = min(r, 2) ,g > 0.

Lemma 3.2. Let e be an element in 3", If it ¢ W >(€).q € Wi (e), ¢ € Qa(e), then

d
1~ .
g " A
[a-ipax- > it [ | ag99Dt -~ g5 Diai Dk + R
N - ~ 1 1
RI < C@olllg el oo = mahie = 1.

Here Q,(e) is the set of all d-quadratic polynomials on e.
Second, we recall the definitions of the regularized Dirac function &%, the regularized Green’s function G* and the discrete
Green’s function Gj from [2,3,8,26].

(1) ¥ point z € K* where K* € ", the regularized Dirac function & € CJ(K?) is an approximation to the Dirac functional in z
which satisfies

/ F(X)on(x)dx = Dp(2), Vi € I, (3.7)
Q

Vi, < Chy®* k=1,2,... (3.8)
(2) The regularized Green’s function G* € Hl( ) is defined by
E(G5,0) = D(z) = (&,D), Vv e H)(Q),

where E(-,-) is a bounded and coercive bilinear form.
(3) The discrete Green’s function G; € S} satisfying

E(G:,bp) = Dp(2) = (&, Dp), Viy € Sh.

Third, based on [2,8,31], we have the following estimate for the discrete Green’s function, which will be used for a key
step in the proof of the multi-variable asymptotic expansion.

Lemma 3.3.

[[e || < C|Inh| if hy < 1 — 1 for some # with 0 < 5 < 1.

Proof. Using the definitions above, we have

(3.9)

LG =& onQ,
G=0 onadQ.

From the elliptic regularity estimate, which is also an a priori estimate (see [3,31] and references therein), we have

IGF. ~ < LHLGZH’ ~ Vp=1+¢€,€>0issmall
2pe p-—1 0p.Q

Then (3.8), (3.9) and & € Cy’(K?) lead to

1

G, = < S, = <] A(/ 1dx)”<c
2p0 S p— 0p.0 Sp-1 0002 \ Jg,
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wherel/p+l/q—] Let q = |Inho| thenp=1+—1—

such that 0 Ty ‘ < C. Then we have

“nh = .When hg <1 — n for a 0 < n < 1, there exists a C independent of ho

"z Z 1/ T
IG Hng < (G Hz_p@ < ClInh|. (3.10)
Now we recall the following three estimates from [2,8],

VG ~+ V2G| ~ < C|Inhg,
0,2,Q 0,1,Q
V(G - cmn;‘lya < Cho| In ho,

I(G =G, 5 <Chy*, s=0.1.
Then, we have

IG =Gl 5 <IG =Gill, 5 +1G =Gl 5 <CUIG =Gyl 5 + V(G =G, 5) < Cho| In .
Let I,G* be the standard finite element interpolation of G* in §g, then by inverse estimate, finite element interpolation error
estimate and (3.10), we get

IG° = Gill,, 5 < IG° =Gl 5 + G =Gl 5 < CIGI,, 5 +Cho ' ILG* = Gyl
<CUGN,, 5+ Chy (WG = G 5+ 16 = Gyl 5) < Clinhol.
Hence,
IGilly, 5 < UGl 5 +1Gy = Gl 5 < Cllnhol. O

Finally, with the same idea as in [19], we can prove the following multi-variable asymptotic expansion by using those
three lemmas above. Note that we need to use the Lemma 3.3 to deal with the W?(Q) norm estimate of the discrete Green’s
function, which is different from [19].

Theorem 3.1. Along with the assumption of (2.3), if f(i1,X) and a;(11,X) is differentiable with respect to o and

e [TWS.(Q)(Hs (), (3.11)
s=1

7% iﬁj(ay(a,fc)ﬁia) —f'(1) > 0, ae.on Q, (3.12)
ij=1

then the error of the solution to (2.6) satisfies the following multi-parameter asymptotic expansion:

[
= S g+ (313)
k=1

where . € Hy(Q) are some functions independent on h. Hence,

:>

Zwk h +&(X), vXeQh
If gy € W;(Q),r—g> 0, then

AlY L — L4+p o2t I _g
Hs||0‘x.g 7O<h0 |In hg| ™4 ),ﬁfmm (1,u,r p)'

Proof. First, we define a new bilinear form

A(W, D) = Zd:(a,»j(a)ﬁ,-w, Dib), VYW, D e Hy(Q). (3.14)

ij=1
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Using (2.5) and (3.14), we get

A(i,0) = A(11,0), ViL, b € H)(Q). (3.15)
Second, let Ry : H})(SA)) — §3 denote the Ritz projection operator with respect to E(-, ), i.e.,

A(RyW,0) = A(W, D), VW, D € HY(Q). (3.16)
Let iy = Ryil, then i, € §’(’;. By the definition of i, (2.4), (3.15) and (3.16), we get

A, ) = (F(@), ), ¥ € S, (3.17)

d ~ ~ ~

;m,—j( )Ditty, D) = (F(0), ), Vhn € S5 (3.18)

Let 0y = ity — 0y, and pq = Uty — @', then
iy — i = 0 + pr. (3.19)

Since (3.18) is a linear discrete scheme for {Ip, then we can apply Lemma 3.1 to (3.18), so we have

=y — 0 =Y higl + (3.20)
k=1
- VTP . d
il 5 = o(hg+ | In f| @ ) o= min(r,2) - 5 > 0. (3.21)

Now we discuss the expansion of § in detail as follows. Using (2.5), (2.6) and (3.14), we get

~ R d o~ ~ ~
A(tin, ¥n) = > (@y(it) Dittn, Dithn)

v (3.22)
= > ((@y (@) — ag(@n)) Ditin, Dypn) + (F (Gn).pn)  Vbn € S
=
Then (3.17), (3.22) and the Taylor expansion lead to
A~ A A A d ~ . N “ ~ . ~ A
A(On, rn) = (F (@n) — F (@), m) + > ((@5(@) — (i) Dy, Dyn)
=
o . d o NP d PN
= (f'(@0) (ltn — 1), ) + (&0, Yrn) — Y _ (i) (i — @) Dittn, D) + > (&, Djtrn)
ij=1 j=1
o R d . a o .
= (f'(@)(ln — ), ) = > (@ (@) Dita(tty, — it), Dhn) + (35, Dihn) + (80, ¥n) + > _ (&, Djipn), Vi € St
ij=1 j=1 j=1
(3.23)
where
&0 = f"(&) (i, — 11)%, & is between i and iy,
d
&= —aj(&) (i — it Diily, & is between it and i1, j=1,....d,
i=1
A d o~
0= — Y @(i) (i — )Dy(iy — 1), j=1,....d
i=1
Hence,
leoll] o < Cllia— ity -, (3.24)
H'A%‘H;_’mva < CHﬂhH;maHﬂ - ﬂhﬂzmav i=1,....4d, (3.25)
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15117 5 < Clli =i}y Slla—ill, . j=1.....d (3.26)

1,00,Q2

Let pp = U, — 11, then

{ly — it = O + Pi. (3.27)

Plugging (3.27) into (3.23) and moving all the terms about 0 to the left hand side of the equation, we have
d d
B(On. Yn) = (' (@)pw. Yrn) — > _ (@) Diitpy, Dybn) + (€0, ) + (0 + €, Dybn),  ¥iw € S},
L = (3.28)
B(On, Yn) = A(On, rn) + > _(@;(@) Diitly, Dyon) — (F' (1) O, rn).-
ij—1

Let

i, (3.29)
then

Ph = P1+ Pa- (3.30)
With (3.11), (3.29) and Lemma 3.2, we get

Froenas g mdA4 lA/AAA4A 1AAIAAA3AA s o]

(@i = -3 3 _h /A [mf () Dt — 7 Di(f' () n) Dt | A + 172 ().

N T maﬁ4 1 o 55 ogn 1AA/AAAAA“3Ad 0
(@(@) Dy pa, Dypn) = — 21 kZ A /5 250 (@) DittD;n Dt — 2 D (@;(2) DittDyrn) Dt | dX + s (1)
s= =1 s

where

172000)] < Ch1dnll) 5. (331)

173 0w)| < ChSI Dyl < CREIMIL, , 5 < ChS Il 5. (3.32)
When we construct the partition in Section 2, there are only ! (I < md) independent grid parameters hi, ..., because of
compatibility conditions, then

(' (@)pa, ) = thMk Un) + 12 (), (3.33)

o~ ~ A ’ ~ A ~ ~
(@ (@) Ditipz, D) =Y HgNe(n) + 113 (Yrn).- (3.34)
k=1

Here, for each k, M(;) is a sum of some integrations like — fA s f () i)y Dt — %ﬁ (f'(it) ) D3it)dx and Ny () is a sum of
some integrations like

1 T
By (3.20), (3.28), (3.30), (3.33), and (3.34), we can get

1 d P . . R R A .
B(On, ) = —>_h {Z (@) Ditigh, Do) — (F'(8) P, ¥n) — Mic(¥rn) +Nk(l//h)} +7(n),
k=1 ij=1
d d ~ (335)
(n) = (€0, 1m) +Z 3 + €, D) + (' (@)1, ) — > (@ (@) Ditbiy, Dyrn) + 2 () — 7 (-
j= ij=1
Let

d ~ ~ A~ A A~ ~ -~ ~
Fulit, yn) = (@ (@) Dy, Dyn) — (F' (@) ) — Mic(rn) + N,

ij=1
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then
I ~ A ~
B(0n, ) = — S hEFe(i, i) + n)- (3.36)
k=1

Construct the following auxiliary problem: find wy € Hé(f)) satisfying
B(Wy, D) = Fi(@1,0), Vb0 e H(])(fz). (3.37)

Because (3.12) guarantees that B(, -) is coercive, Lax-Milgram theorem guarantees the existence and uniqueness of ;. Let R,
denote Ritz projection with respect to B(-,-), then (3.36) and (3.37) lead to

B(0h + kz’:fz;gmwk, ) = A0n), Vi € Sh. (3.38)
=1
Using Hoélder’s inequality, (3.11), (3.24), (3.25), (3.26) and the finite element error estimates, we can get
o n)] < ol 5110l | 5 < CRSINAIL 5. (339)
15 Dn)| < &5, 51Dl 5 < CHIDAIL, 50 =1, d, (3.40)
|65 D) < 1351, IDgll) & < Ch3llnll 5. G =T1.....d. (3.41)

Similarly, with Holder’s inequality and (3.21), we have

|/ (@) )| < ChE™#) In ol |l =, (3.42)

(@ (@D, Dy | < ChE Inbol T 5 j=1,....d. (3.43)
By (3.31), (3.32), (3.35), (3.39), (3.40), (3.41), (3.42) and (3.43), we get

700)| < Chg™ | In o[ T |, 5. B = min(1, ). (3.44)

Let G* denote the regularized Green’s function satisfying
B(b,G,) = D(Z), VZe Q,0eH\(Q). (3.45)

G; = RiG, is the Ritz projection of G,. Let Wi = G: in (3.38). From the coercivity of B(-, ), (3.38), (3.44) and (3.45) we can get
that Vz € Q,

1 L.
< Z Rhwk> ' ’B (0}1 + Z h;:RhVAVk, GZ)

k=1 k=1

= [7(GM)| < Chg™™ | In ho['T| G2

21,0

Since Z is arbitrary, then Lemma 3.3 gives
100+ thRhWk” - < Chg"[In ho[ .
k=1
Hence,
Z)+ z’: hiRWi(Z) = &, HSH;D& < CRA"1| Inho [T
k=1 00,
If w e W,r;(@) r—4>0, then
!

On = — > Hjw + 74 (3.46)
k=1

Ao [4+p = . d . d

Hm”o 5<Cho |[Inho| @ and B = min ﬁl,r—a = min l,oc,r—E . (3.47)

Let
U= de—wi, k=1,...1 (3.48)
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By (3.19), (3.20), (3.21), (3.46), (3.47), and (3.48), we finish the proof. O

Remark 3.1. Similar to the Remark 4 in [20], the expansion holds not only for all the grid nodes in Qh but also for all the
edge midpoints and centers in Qf.

4. Splitting extrapolation formulas at all globally fine grid points

In Section 3, we proved the multi-parameter asymptotic expansion of discrete d-quadratic iso-parametric finite element
errors. Based on this expansion, in this section we will develop the splitting extrapolation formulas by applying the basic
idea of splitting extrapolation. We will develop the splitting extrapolatlon formulas for all the nodes in the globally fine grid,
not only on the coarse grid and locally fine grids. Let u<°> and u ) be the approximations on Q" and Q respectively. Let

O(h3 | In ho[ 7).

(1 ) Type 0: grid points in Q” Suppose A is a grid point in Qh First, we prove the following theorem with the same idea as

in [9,13,20,22].

Theorem 4.1.

Gl

i { 18 1}&}10)(A) ) — e (4.49)
i=1

Proof. From (3.13), we have

1
) (A) = (A) + Y hfgi(A) + &, (4.50)
i=1
1
i (A) = a(A) + > hivi(A) + f—Gﬁﬁlbk(A) +e, k=1, (4.51)
i=1
i#k

I
. . N 1 "
it (A) + 02 3 4 (A) = (o + 0aD)it(A) + {oh +op(l—1)+o ﬁ} > higi(A) +e. (4.52)
1
Let oy + ol =1,000 +0a(l—1) + 02 11—6 = 0. Then, solving the equations for ¢; and o, and plugging them into (4.52), we finish
the proof. O

From Theorem 4.1, we can get the splitting extrapolation formula for grid points in f)’g as follows:

1
:%Zagﬁmw {7El+l} )(A). (4.53)

(2) Type 1: grid points in U1 19” \ Q” Let A; and A; be two neighboring coarse grid points. Suppose B is the midpoint of
A1A; and B € Q” \ Q“ First, we prove the following theorem with the same idea as in [9,13,20,22].
Theorem 4.2.

2

13 8 ;
——O;[ (A0 i (A - EZ;[ () — 19 (A0)]| = (B) + & + O(R).
Proof. Because A; and A, are coarse grid points, (4.50) and (4.51) are still true for them. Therefore,Vj=1,...,Lk=1,2,
N 15
0" () — i) (A) = g0} (A +
Then
A — L8y — a0
%( k) ]S[Hh ( Ic)_uh( k)}“’g-
Because
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P 8 2.r. L .
BOPB) = 7 S (60 (A) — 1 (A0)] + &+ O(h3). (4.54)
~ (T A~ l T 7 T 7
iy (B) = u(B) + > h'y;(B) + ] Gh;‘q//,»(B) +e. (4.55)

Plugging (4.54) into (4.55), we finish the proof. O

From Theorem 4.2, we can get the splitting extrapolation formula for grid points in Q7 \ Q} as follows.

2

(B) = & (B) - 35 Z [uh (Ar) — ] - % 3 [ (A — 11l (Ak)] (4.56)

j=1 k=1
J#i
(3) Type 2: Centers of rectangular elements. Suppose C is the center of a rectangular element, Ay(k = 1,...,4) are the four
vertices and Bi(k = 1,...,4) are the midpoints of the four edges. First, Uy(Ax) and U, (By) are computed according to (4.53)
and (4.56). Then by using an incomplete bi-quadratic interpolation without term x2y? [19,24], we get

> (B —% > uo(Ay). (4.57)

(4) Type 3: Centers of rectangular parallelepiped elements. Suppose D is the center of a rectangular parallelepiped ele-
ment, Ag(k =1,...,8) are the eight vertices and By(k =1,...,12) are the midpoints of the 12 edges. First, Up(A;) and
Ui (By) are computed according to (4.53) and (4.56). Then by using an incomplete tri-quadratic interpolation without term
X2y2z% x*y*z, xzyz2 xy2z%, x%y? x*22,y%2% [19,24], we get

Zw (Bi) — Zuo (Ar). (4.58)

5. Parallel/sequential algorithm

In this section, we will introduce a parallel/sequential algorithm based on the splitting extrapolation formulas in Section 5
and the idea in [9,12,20,30].

Step 1: Construct the initial domain decomposition Q = | JI,Q; according to the dimension and interface of the problem,
the shape and size of the domain, and the computers used, which satisfies the compatible conditions (1), (2) and (3) in
Section 2. Obviously, by using iso-parametric or sub-parametric mapping of a high enough degree, the mapping ¥; may
be constructed, see [24] and reference therein.

Step 2: Construct the uniform cuboid partition 3?(1’ =1,...,m) for each Q; with independent grid parameters h;, ..., hy,
which satisfies the compatible conditions (4), (5), (6) and (7) in Section 2.
Step 3: Compute il;;), i=0,...,l by using the standard finite element method in parallel/sequentially. All processors call

the same subroutines with different input parameters if we use parallel computation.

Step 4: Implement (4.53), (4.56), (4.57) and (4.58) to all the grid nodes, the edge middle points, the centers of the rect-
angular elements and centers of rectangular parallelepiped elements of the coarse grid Qff by using the results from all
processors.

Remark 5.1. The following is a pseudo code by using MPI for steps 3 and 4 in parallel computation. Suppose the independent
parameters for the coarse grid form a vector h = (hy,..., ,h)) and the name of the subroutine to compute u}f,z =0,...,lis
solve_uh.

INCLUDE ‘mpif.h’
CALL MPLINIT(error_inf)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, total_processors, error_inf)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, i, error_inf)
I = total_processors — 1
If (i.eq. 0) THEN
CALL solve_uh(h, u_0)
ELSE
h_fined(:)=h(:)
h_fined(i)=h(i)/2
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CALL solve_uh(h_fined, u_i)
ENDIF
If (i.eq. 0) THEN
DO i=1, |
CALL MPI_RECV(receive u_i from processor i)
ENDDO
ELSE
CALL MPI_SEND(send u_i to processor 0)
ENDIF
IF (i.eq. 0) THEN
CALL Extrapolation(u_final,u_O,...,u_l)/* Implement (4.53), (4.56), (4.57) and (4.58) */
ENDIF
CALL MPI_FINALIZE(error_inf)
END

Remark 5.2. In step 3, if we construct the domain decomposition proportionally and design independent variables properly,
the processors computing ﬂ;f)(i =1,...,]) can have almost the same load. For example, for domain Q = [0, 2] x [0, 2], we con-
struct domain decomposition as = |J!,2;, @ = [0,1] x [0,1],2, = [0,1] x [1,2],25 = [1,2] x [0,1],24 = [1,2] x [1,2] and
design independent mesh parameters as follows. h; is the horizontal mesh parameter of Q; and ©,. h; is the horizontal mesh
parameter of Q5 and Q4. hs is the vertical mesh parameter of Q; and Q5. hy is the vertical mesh parameter of Q, and Q4. If we
take h; =1,i=1,... 4, then all the four processors computing uff)(i =1,...,4) work on a mesh with (2n + 1)(3n + 1) mesh
nodes. Therefore, their loads are balanced.

Remark 5.3. For step 3, if we compute ﬂ;?, i=0,...,lsequentially, then we can save a lot of memory. After we compute each
ﬂﬁl’) by using the standard finite element method, we only need to save the final results and can deallocate most of the mem-
ory. Since all the ﬂ;"),i =0,...,lare on the coarse grid or locally fined grids, then the required memory is much less than that
of the globally fine grid. However, we finally get an approximation with high accuracy on the globally fine grid by using the
splitting extrapolation formulas.

6. A posteriori error estimates

In this section, we present some a posteriori error estimates. Suppose A is a grid point in ?zg. First, we have an a posteriori
error estimate for the approximation ﬂ;]") (A) (k=0,...,]) as follows:

Theorem 6.1.

I ,
i (A) — 4(A)] < 3 Y [0 (A) — ) (A)] + &, (6.59)
=1
0 ; 16 {~ -0 o0 10 (k)
[, (A) — u(A)| < 15 Z [u,” (A) — " (A)| +ﬁ|u“ A) -1, (A)|+e, k=1,...,L (6.60)
=1
Jj#k

Proof. Using (4.50) and (4.51), Vj =1,...,], we get

i) (A) — i) (A) = 75 1 y(A) + 2. (6.61)
Thus,
htdA) = 1o [i8? 4) i ()] + & (6.62)
Plugging (6.59) and (6.63) back into (4.50) and (4.51) and using the triangular inequality, we finish the proof. O
Second, we have an a posteriori error estimate for the average of ﬂ;f‘) (A)(j=1,...,]) as follows.
Theorem 6.2.

+e (6.63)

Proof. Using the triangular inequality and (4.49), we finish the proof. O
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7. Numerical experiments

In this section, we will present two numerical examples to illustrate the features of splitting extrapolation in this article.
We will see that our method is efficient for solving discontinuous problems if we regard the interfaces of the problems as the
interfaces of the initial domain decomposition.

Example 1. Consider a semi-linear elliptic interface equation

{ -v(axy)vu)=f(xyu) onQ
u(x,y) =g(x,y) on 0Q

together with the jump conditions on the interface I' = {(x,y) : x=1,0<y < 1}:

) Q 1 )
=, atey) 1 =0.atxn) = {7 O qu{{zi 1}}.

An example of this problem is a simple electrostatic field problem in which two objects of different materials stick to each
other. Let Q be a curved quadrangle. Its bottom boundary is a line through P; = (0,0) and P, = (2, 0) while its top boundary is
a line through P, = (0,1) and P; = (2,1). The left side boundary is a parabola through points P;, Ps = (—0.25,0.5) and P,. The
right side boundary is a parabola through points P, Ps = (2.25,0.5) and Ps. Let Ps = (1,0),P; = (1,1),Py = (1,1) and

u+15r(r + 1)(3x = 2)y(y — 1) — 30rx + 15r(r + 1)x(x — 1)> = 15xy(y — 1)
+7.5(r+1)(x - 1)2xy(y -1), onQN{x<1},

U+ 15(r+1)(3x = 2)y(y — 1) = 30(rx + 1 — 1) + 15(r + 1)x(x — 1)> = 15rxy(y — 1)
~15(1 =ny(y—1)+75(r+1)(x— 1)*xy(y — 1), on Q{x > 1}.

Here, r = 0.5. First, we construct an initial domain decomposition @ = [ J2_, Q; where Q; = Q{x < 1} and @, = Q{x > 1}.
With the d-quadratic iso-parametric mapping, 2, @, and Q, are mapped to Q = [0,2] x [0,1], @; = [0,1) x [0,1], and
Q, =[1,2] x [0,1] separately. Then we design three independent step sizes as follows: h;(i = 1,2) are the step sizes of
fl,-(i = 1,2) in the x-direction; hs is the step size in the y-direction. We use Newton iteration for the nonlinear system. Let
hi =1(i=1,2,3). Some results are shown in Table 1. In order to get the splitting extrapolation solution on the globally fine
grid, we only need to apply the standard finite element method on the coarse grid and the locally fine grids. Therefore, we do
not compute the standard finite element solution at the globally fine grid points which are not the grid points of the coarse
grid or locally fine grids. Let =+ denote these unknown results in the following tables. In our examples, the coarse grid is the
grid with the step size h; = } (i = 1,2,3) and the globally fine grid is the grid with the step size h; = (i = 1,2, 3). Error of FE is
the error of the standard finite element approximation. Error of SEM is the error of the splitting extrapolation solution. Max
error is the maximum error of all grid points. In Table 2, we show the maximum values of a posteriori error estimates at all
coarse grid points, which are discussed in Section 7. Let APE1 be the maximum value of a posteriori error estimate in (6.59),
APE2, APE3 and APE4 be that of a posteriori error estimate in (6.60) for k = 1,2, 3 separately and APE5 be that of a posteriori
error estimate in (6.63) (See Table 3).

fxyu) =

Example 2. Consider a quasi-linear elliptic equation for

{v((Huz)VU)—f(X,y,U) on @,

ux,y) =gx,y) on 002
Table 1
Some numerical results for Example 1
Grid points Point type Error of FE Error of SEM
(0.0293, 0.8750) Type 0 +1.7041 x 10°° +2.6020 x 1078
(1.0000, 0.1250) Type 0 +5.3739 x 107° —7.1147 x 108
(—0.0029, 0.6250) Type 1 +1.1420 x 107° —~1.0005 x 10~%
(1.0000, 0.5625) Type 1 +9.5820 x 107° +8.0716 x 1077
(0.6399, 0.8125) Type 2 *k +1.0381 x 107>
(~0.0803, 0.1875) Type 2 oo -3.1115x 10°*
Max error on coarse grid +9.8016 x 107> ~1.8928 x 10°°
Max error on fine grid ™ +6.5470 x 1074
Table 2
Some numerical results for a posteriori error estimates of Example 1
APE1 APE2 APE3 APE4 APE5
2.5077 x 10°* 1.7968 x 10°* 8.7778 x 10> 24975 x 10°* 6.8141 x 10>




Table 3

Some numerical results for Example 2
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Grid points Point type Error of FE Error of SEM
(0.5371, 0.3750) Type 0 +6.6936 x 10~ —6.1788 x 1077
(1.0000, 0.7500) Type 0 +7.5411 x 1074 —2.7759 x 1076
(0.3320, 0.2500) Type 1 +6.1854 x 107* +5.5820 x 1077
(1.0000, 0.6875) Type 1 +9.7828 x 10~° ~1.5739 x 10°°
(1.9924, 0.0625) Type 2 - —2.6682 x 10°°
(0.9241, 0.6875) Type 2 o —7.3853 x 10
Max error on coarse grid +7.8225 x 1074 —~1.5310 x 10>
Max error on fine grid ™ —-1.0632 x 1074
Table 4

Some numerical results for a posteriori error estimates of Example 2

APE1 APE2 APE3 APE4 APE5

7.9946 x 10~* 7.5841 x 10°* 7.5841 x 10°* 22837 x 107* 5.1345 x 10°*

An example of this problem is a heat conduction problem whose thermal conductivity depends on the temperature. Let
fxy,u) =3m*(u+u) — Z sin’(my) sin(%) cos?(Z) — 27 sin’ (%) sin(my) cos?(my). Let Q be the same curved quadrangle as
in Example 1. The initial domain decomposition and the design of independent step sizes are the same as in Example
1.We use Newton iteration for the nonlinear system. Let h; = ; (i = 1,2, 3). Some results are shown in Table 2. In Table 4,
we also show the maximum values of a posteriori error estimates at all coarse grid points for Example 2.

8. Conclusions

The splitting extrapolation formulas are just some linear combinations and can be easily implemented. They generate an
approximation with higher accuracy on a globally fine grid while only requiring some approximations from a set of smaller
discrete subproblems on different coarser grids. Because these subproblems are independent of each other and have similar
scales, the method is naturally parallel and also possesses a high degree of parallelism. Additionally, the multi-parameter
expansion only requires the local smoothness of the solutions, i.e., the smoothness of the solutions in each sub-domain.
Therefore, splitting extrapolation is efficient for solving discontinuous problems if we regard the interfaces of the problems
as the interfaces of the initial domain decomposition. The numerical examples above verify our theoretical analysis.
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